Hyperspectral reporters for long-distance and wide-area detection of gene expression in living bacteria – Nature Biotechnology

Zhang, J., Campbell, R. E., Ting, A. Y. & Tsien, R. Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918 (2002).
Google Scholar
Yagi, K. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl. Microbiol. Biotechnol. 73, 1251–1258 (2007).
Google Scholar
Rodrigo-Navarro, A., Sankaran, S., Dalby, M. J., del Campo, A. & Salmeron-Sanchez, M. Engineered living biomaterials. Nat. Rev. Mater. 6, 1175–1190 (2021).
Google Scholar
Kang, J. H. & Chung, J.-K. Molecular-genetic imaging based on reporter gene expression. J. Nucl. Med. 49, 164S–179S (2008).
Google Scholar
Ghim, C. M., Lee, S. K., Takayama, S. & Mitchell, R. J. The art of reporter proteins in science: past, present and future applications. BMB Rep. 43, 451–460 (2010).
Google Scholar
Hall, C. V., Jacob, P. E., Ringold, G. M. & Lee, F. Expression and regulation of Escherichia coli lacZ gene fusions in mammalian cells. J. Mol. Appl. Genet. 2, 101–109 (1983).
Google Scholar
Nielsen, D. A., Chou, J., MacKrell, A. J., Casadaban, M. J. & Steiner, D. F. Expression of a preproinsulin-β-galactosidase gene fusion in mammalian cells. Proc. Natl Acad. Sci. USA 80, 5198–5202 (1983).
Google Scholar
Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).
Google Scholar
Shepherd, E. S., DeLoache, W. C., Pruss, K. M., Whitaker, W. R. & Sonnenburg, J. L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557, 434–438 (2018).
Google Scholar
Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).
Google Scholar
Geddes, B. A. et al. Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria. Nat. Commun. 10, 3430 (2019).
Google Scholar
Heidecker, G. & Müller-Hill, B. Synthetic multifunctional proteins. Mol. Gen. Genet. 155, 301–307 (1977).
Google Scholar
Sharma, S. K., Poudel Sharma, S. & Leblanc, R. M. Methods of detection of β-galactosidase enzyme in living cells. Enzyme Microb. Technol. 150, 109885 (2021).
Google Scholar
Miller, J. H. Experiments in Molecular Genetics (Cold Spring Habour Laboratory, 1972).
Hui, C.-y et al. Genetic control of violacein biosynthesis to enable a pigment-based whole-cell lead biosensor. RSC Adv. 10, 28106–28113 (2020).
Google Scholar
Hui, C.-y, Guo, Y., Li, H., Gao, C.-x & Yi, J. Detection of environmental pollutant cadmium in water using a visual bacterial biosensor. Sci. Rep. 12, 6898 (2022).
Google Scholar
Hui, C.-y et al. Indigoidine biosynthesis triggered by the heavy metal-responsive transcription regulator: a visual whole-cell biosensor. Appl. Microbiol. Biotechnol. 105, 6087–6102 (2021).
Google Scholar
Yoshida, K. et al. Novel carotenoid-based biosensor for simple visual detection of arsenite: characterization and preliminary evaluation for environmental application. Appl. Environ. Microbiol. 74, 6730–6738 (2008).
Google Scholar
Hui, C.-y et al. Metabolic engineering of the carotenoid biosynthetic pathway toward a specific and sensitive inorganic mercury biosensor. RSC Adv. 12, 36142–36148 (2022).
Google Scholar
He, Y., Zhang, T., Sun, H., Zhan, H. & Zhao, Y. A reporter for noninvasively monitoring gene expression and plant transformation. Hortic. Res. 7, 152 (2020).
Google Scholar
Zalatan, J. G. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339–350 (2015).
Google Scholar
Sandell, J. L. & Zhu, T. C. A review of in-vivo optical properties of human tissues and its impact on PDT. J. Biophotonics 4, 773–787 (2011).
Google Scholar
McKinnon, K. M. Flow cytometry: an overview. Curr. Protoc. Immunol. 120, 5.1.1–5.1.11 (2018).
Google Scholar
Dietrich, J. A., McKee, A. E. & Keasling, J. D. High-throughput metabolic engineering: advances in small-molecule screening and selection. Annu. Rev. Biochem. 79, 563–590 (2010).
Google Scholar
Prabowo, C. P. S. et al. Production of natural colorants by metabolically engineered microorganisms. Trends Chem. 4, 608–626 (2022).
Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl Acad. Sci. USA 99, 12651–12656 (2002).
Google Scholar
Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).
Google Scholar
Shcherbakova, D. M. & Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods 10, 751–754 (2013).
Google Scholar
Drepper, T. et al. Reporter proteins for in vivo fluorescence without oxygen. Nat. Biotechnol. 25, 443–445 (2007).
Google Scholar
Belkin, S. et al. Remote detection of buried landmines using a bacterial sensor. Nat. Biotechnol. 35, 308–310 (2017).
Google Scholar
Rigoulot, S. B. et al. Imaging of multiple fluorescent proteins in canopies enables synthetic biology in plants. Plant Biotechnol. J. 19, 830–843 (2021).
Google Scholar
Shcherbakova, D. M., Stepanenko, O. V., Turoverov, K. K. & Verkhusha, V. V. Near-infrared fluorescent proteins: multiplexing and optogenetics across scales. Trends Biotechnol. 36, 1230–1243 (2018).
Google Scholar
Liu, P., Mu, X., Zhang, X.-D. & Ming, D. The near-infrared-II fluorophores and advanced microscopy technologies development and application in bioimaging. Bioconjug. Chem. 31, 260–275 (2019).
Google Scholar
Shu, X. et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324, 804–807 (2009).
Google Scholar
Piatkevich, K. D. et al. Near-infrared fluorescent proteins engineered from bacterial phytochromes in neuroimaging. Biophys. J. 113, 2299–2309 (2017).
Google Scholar
Rodriguez, E. A. et al. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein. Nat. Methods 13, 763–769 (2016).
Google Scholar
Ow, D. W. et al. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234, 856–859 (1986).
Google Scholar
Millar, A. J., Short, S. R., Chua, N. H. & Kay, S. A. A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4, 1075–1087 (1992).
Google Scholar
Liu, Y., Golden, S. S., Kondo, T., Ishiura, M. & Johnson, C. H. Bacterial luciferase as a reporter of circadian gene expression in cyanobacteria. J. Bacteriol. 177, 2080–2086 (1995).
Google Scholar
McElroy, W. D. The energy source for bioluminescence in an isolated system. Proc. Natl Acad. Sci. USA 33, 342–345 (1947).
Google Scholar
Love, A. C. & Prescher, J. A. Seeing (and using) the light: recent developments in bioluminescence technology. Cell Chem. Biol. 27, 904–920 (2020).
Google Scholar
Cheng, H.-Y., Masiello, C. A., Bennett, G. N. & Silberg, J. J. Volatile gas production by methyl halide transferase: an in situ reporter of microbial gene expression in soil. Environ. Sci. Technol. 50, 8750–8759 (2016).
Google Scholar
Cheng, H.-Y. et al. Ratiometric gas reporting: a nondisruptive approach to monitor gene expression in soils. ACS Synth. Biol. 7, 903–911 (2018).
Google Scholar
Shu, X. et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 9, e1001041 (2011).
Google Scholar
Shapiro, M. G. et al. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat. Nanotechnol. 9, 311–316 (2014).
Google Scholar
Farhadi, A., Ho, G. H., Sawyer, D. P., Bourdeau, R. W. & Shapiro, M. G. Ultrasound imaging of gene expression in mammalian cells. Science 365, 1469–1475 (2019).
Google Scholar
Wang, L. V. & Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 13, 627–638 (2016).
Google Scholar
Genove, G., DeMarco, U., Xu, H., Goins, W. F. & Ahrens, E. T. A new transgene reporter for in vivo magnetic resonance imaging. Nat. Med. 11, 450–454 (2005).
Google Scholar
Luker, G. D. et al. Noninvasive imaging of protein–protein interactions in living animals. Proc. Natl Acad. Sci. USA 99, 6961–6966 (2002).
Google Scholar
Daeffler, K. N. M. et al. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol. Syst. Biol. 13, 923 (2017).
Google Scholar
Del Valle, I. et al. Translating new synthetic biology advances for biosensing into the earth and environmental sciences. Front. Microbiol. 11, 618373 (2021).
Google Scholar
McNerney, M. P., Doiron, K. E., Ng, T. L., Chang, T. Z. & Silver, P. A. Theranostic cells: emerging clinical applications of synthetic biology. Nat. Rev. Genet. 22, 730–746 (2021).
Google Scholar
Voigt, C. A. Genetic parts to program bacteria. Curr. Opin. Biotechnol. 17, 548–557 (2006).
Google Scholar
Lazar, J. T. & Tabor, J. J. Bacterial two-component systems as sensors for synthetic biology applications. Curr. Opin. Syst. Biol. 28, 100398 (2021).
Google Scholar
Nielsen, A. A. et al. Genetic circuit design automation. Science 352, aac7341 (2016).
Google Scholar
Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. Escherichia coli ‘Marionette’ strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019).
Google Scholar
Basu, S., Mehreja, R., Thiberge, S., Chen, M.-T. & Weiss, R. Spatiotemporal control of gene expression with pulse-generating networks. Proc. Natl Acad. Sci. USA 101, 6355–6360 (2004).
Google Scholar
Wilke, C. Remote sensing for crops spots pests and pathogens. ACS Cent. Sci. 9, 339–342 (2023).
Google Scholar
do Prado Ribeiro, L. et al. Hyperspectral imaging to characterize plant–plant communication in response to insect herbivory. Plant Methods 14, 54 (2018).
Google Scholar
Stuart, M. B., McGonigle, A. J. & Willmott, J. R. Hyperspectral imaging in environmental monitoring: a review of recent developments and technological advances in compact field deployable systems. Sensors 19, 3071 (2019).
Google Scholar
Silva, C. S. et al. Near infrared hyperspectral imaging for forensic analysis of document forgery. Analyst 139, 5176–5184 (2014).
Google Scholar
Chen, H.-W., McGurr, M. & Brickhouse, M. in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI (eds Velez-Reyes, M. & Kruse, F. A.) 947202 (SPIE, 2015).
Mahlein, A.-K., Kuska, M. T., Behmann, J., Polder, G. & Walter, A. Hyperspectral sensors and imaging technologies in phytopathology: state of the art. Annu. Rev. Phytopathol. 56, 535–558 (2018).
Google Scholar
Leblanc, G., Kalacska, M. & Soffer, R. Detection of single graves by airborne hyperspectral imaging. Forensic Sci. Int. 245, 17–23 (2014).
Google Scholar
Briechle, S., Molitor, N., Krzystek, P. & Vosselman, G. Detection of radioactive waste sites in the Chornobyl exclusion zone using UAV-based lidar data and multispectral imagery. ISPRS J. Photogramm. Remote Sens. 167, 345–362 (2020).
Google Scholar
Lang, M., Stelzer, M. & Schomburg, D. BKM-react, an integrated biochemical reaction database. BMC Biochem. 12, 42 (2011).
Google Scholar
Bansal, P. et al. Rhea, the reaction knowledgebase in 2022. Nucleic Acids Res. 50, D693–D700 (2021).
Google Scholar
Karp, P. D. et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief. Bioinform. 20, 1085–1093 (2019).
Google Scholar
Taniguchi, M. & Lindsey, J. S. Database of absorption and fluorescence spectra of >300 common compounds for use in PhotoChemCAD. Photochem. Photobiol. 94, 290–327 (2018).
Google Scholar
Noelle, A. et al. UV/Vis+ photochemistry database: structure, content and applications. J. Quant. Spectrosc. Radiat. Transf. 253, 107056 (2020).
Google Scholar
Vokáčová, Z. & Burda, J. V. Computational study on spectral properties of the selected pigments from various photosystems: structure–transition energy relationship. J. Phys. Chem. A 111, 5864–5878 (2007).
Google Scholar
Phan, K., De Meester, S., Raes, K., De Clerck, K. & Van Speybroeck, V. A comparative study on the photophysical properties of anthocyanins and pyranoanthocyanins. Chemistry 27, 5956–5971 (2021).
Google Scholar
Jacquemin, D., Perpète, E. A., Ciofini, I. & Adamo, C. Accurate simulation of optical properties in dyes. Acc. Chem. Res. 42, 326–334 (2009).
Google Scholar
Charaf-Eddin, A., Planchat, A., Mennucci, B., Adamo, C. & Jacquemin, D. Choosing a functional for computing absorption and fluorescence band shapes with TD-DFT. J. Chem. Theory Comput. 9, 2749–2760 (2013).
Google Scholar
Conradie, J., Wamser, C. C. & Ghosh, A. Understanding hyperporphyrin spectra: TDDFT calculations on diprotonated tetrakis(p-aminophenyl)porphyrin. J. Phys. Chem. A 125, 9953–9961 (2021).
Google Scholar
Jacquemin, D., Wathelet, V., Perpète, E. A. & Adamo, C. Extensive TD-DFT benchmark: singlet-excited states of organic molecules. J. Chem. Theory Comput. 5, 2420–2435 (2009).
Google Scholar
Gritsenko, O. & Baerends, E. J. Asymptotic correction of the exchange–correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations. J. Chem. Phys. 121, 655–660 (2004).
Google Scholar
Laurent, A. D. & Jacquemin, D. TD-DFT benchmarks: a review. Int. J. Quant. Chem. 113, 2019–2039 (2013).
Google Scholar
Duan, C., Nandy, A., Meyer, R., Arunachalam, N. & Kulik, H. J. A transferable recommender approach for selecting the best density functional approximations in chemical discovery. Nat. Comput. Sci. 3, 38–47 (2023).
Google Scholar
Shao, Y., Mei, Y., Sundholm, D. & Kaila, V. R. I. Benchmarking the performance of time-dependent density functional theory methods on biochromophores. J. Chem. Theory Comput. 16, 587–600 (2020).
Google Scholar
Weimer, A., Kohlstedt, M., Volke, D. C., Nikel, P. I. & Wittmann, C. Industrial biotechnology of Pseudomonas putida: advances and prospects. Appl. Microbiol. Biotechnol. 104, 7745–7766 (2020).
Google Scholar
Steunou, A.-S., Astier, C. & Ouchane, S. Regulation of photosynthesis genes in Rubrivivax gelatinosus: transcription factor PpsR is involved in both negative and positive control. J. Bacteriol. 186, 3133–3142 (2004).
Google Scholar
Lachaud, F. et al. Ground and excited state properties of new porphyrin based dyads: a combined theoretical and experimental study. J. Phys. Chem. A 116, 10736–10744 (2012).
Google Scholar
Kantorovich, L. V. Mathematical methods of organizing and planning production. Manag. Sci. 6, 366–422 (1960).
Google Scholar
Ramdas, A., García Trillos, N. & Cuturi, M. On Wasserstein two-sample testing and related families of nonparametric tests. Entropy 19, 47 (2017).
Google Scholar
Kotlobay, A. A. et al. Genetically encodable bioluminescent system from fungi. Proc. Natl Acad. Sci. USA 115, 12728–12732 (2018).
Google Scholar
Gallo, G., Longo, G., Pallottino, S. & Nguyen, S. Directed hypergraphs and applications. Discret. Appl. Math. 42, 177–201 (1993).
Google Scholar
Chen, G. E. et al. Complete enzyme set for chlorophyll biosynthesis in Escherichia coli. Sci. Adv. 4, eaaq1407 (2018).
Google Scholar
Bioucas-Dias, J. M. et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5, 354–379 (2012).
Google Scholar
Xu, L., Li, J., Wong, A. & Peng, J. K-P-Means: a clustering algorithm of K ‘purified’ means for hyperspectral endmember estimation. IEEE Geosci. Remote Sens. Lett. 11, 1787–1791 (2014).
Google Scholar
Prades, J., Safont, G., Salazar, A. & Vergara, L. Estimation of the number of endmembers in hyperspectral images using agglomerative clustering. Remote Sensing 12, 3585 (2020).
Google Scholar
Wegele, R., Tasler, R., Zeng, Y., Rivera, M. & Frankenberg-Dinkel, N. The heme oxygenase (s)-phytochrome system of Pseudomonas aeruginosa. J. Biol. Chem. 279, 45791–45802 (2004).
Google Scholar
Maiti, A. et al. Structural and photophysical characterization of the small ultra-red fluorescent protein. Nat. Commun. 14, 4155 (2023).
Google Scholar
Boo, A. et al. Synthetic microbe-to-plant communication channels. Nat. Commun. 15, 1817 (2024).
Google Scholar
Chen, G. E. & Hunter, C. N. Engineering chlorophyll, bacteriochlorophyll, and carotenoid biosynthetic pathways in Escherichia coli. ACS Synth. Biol. 12, 2236–2244 (2023).
Google Scholar
Saga, Y. et al. Selective oxidation of B800 bacteriochlorophyll a in photosynthetic light-harvesting protein LH2. Sci. Rep. 9, 3636 (2019).
Google Scholar
Becker, M., Nagarajan, V. & Parson, W. W. Properties of the excited singlet states of bacteriochlorophyll a and bacteriopheophytin a in polar solvents. J. Am. Chem. Soc. 113, 6840–6848 (1991).
Google Scholar
Yokobayashi, Y., Weiss, R. & Arnold, F. H. Directed evolution of a genetic circuit. Proc. Natl Acad. Sci. USA 99, 16587–16591 (2002).
Google Scholar
Tabor, J. J., Levskaya, A. & Voigt, C. A. Multichromatic control of gene expression in Escherichia coli. J. Mol. Biol. 405, 315–324 (2011).
Google Scholar
Fernandez-Rodriguez, J., Moser, F., Song, M. & Voigt, C. A. Engineering RGB color vision into Escherichia coli. Nat. Chem. Biol. 13, 706–708 (2017).
Google Scholar
Bradley, A. P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 30, 1145–1159 (1997).
Google Scholar
Gouterman, M. Study of the effects of substitution on the absorption spectra of porphin. J. Chem. Phys. 30, 1139–1161 (1959).
Google Scholar
Taniguchi, M., Bocian, D. F., Holten, D. & Lindsey, J. S. Beyond green with synthetic chlorophylls—connecting structural features with spectral properties. J. Photoch. Photobio. C 52, 100513 (2022).
Google Scholar
Gouterman, M. Spectra of porphyrins. J. Mol. Spectrosc. 6, 138–163 (1961).
Google Scholar
Taniguchi, M. & Lindsey, J. S. Absorption and fluorescence spectral database of chlorophylls and analogues. Photochem. Photobiol. 97, 136–165 (2021).
Google Scholar
Lakomy, I. et al. C45– and C50-carotenoids. Part 8. Synthesis of (all-E,2S,2′S)-bacterioruberin, (all-E,2S,2′S)-monoanhydrobacterioruberin, (all-E,2S,2′S)-bisanhydrobacterioruberin, (all-E,2R,2′R)-3,4,3′,4′-tetrahydrobisanhydrobacterioruberin, and (all-E,S)-2-isopentenyl-3,4-dehydrorhodopin. Helvetica 80, 472–486 (2010).
Levin, I., Liu, M., Voigt, C. A. & Coley, C. W. Merging enzymatic and synthetic chemistry with computational synthesis planning. Nat. Commun. 13, 7747 (2022).
Google Scholar
Sankaranarayanan, K. et al. Similarity based enzymatic retrosynthesis. Chem. Sci. 13, 6039–6053 (2022).
Google Scholar
Probst, D. et al. Biocatalysed synthesis planning using data-driven learning. Nat. Commun. 13, 964 (2022).
Google Scholar
Koch, M., Duigou, T. & Faulon, J.-L. Reinforcement learning for bioretrosynthesis. ACS Synth. Biol. 9, 157–168 (2019).
Google Scholar
Lin, G.-M., Warden-Rothman, R. & Voigt, C. A. Retrosynthetic design of metabolic pathways to chemicals not found in nature. Curr. Opin. Syst. Biol. 14, 82–107 (2019).
Google Scholar
Koscher, B. A. et al. Autonomous, multiproperty-driven molecular discovery: from predictions to measurements and back. Science 382, eadi1407 (2023).
Google Scholar
Gómez-Bombarelli, R. et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 15, 1120–1127 (2016).
Google Scholar
Chemla, Y., Sweeney, C. J., Wozniak, C. A. & Voigt, C. A. Design and regulation of engineered bacteria for environmental release. Nat. Microbiol. 10, 281–300 (2025).
Google Scholar
Bloch, S. E. et al. Biological nitrogen fixation in maize: optimizing nitrogenase expression in a root-associated diazotroph. J. Exp. Bot. 71, 4591–4603 (2020).
Google Scholar
Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988).
Google Scholar
Riniker, S. & Landrum, G. A. Better informed distance geometry: using what we know to improve conformation generation. J. Chem. Inf. Model. 55, 2562–2574 (2015).
Google Scholar
Halgren, T. A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17, 490–519 (1996).
Google Scholar
Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB—an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).
Google Scholar
Cossi, M. & Barone, V. Time-dependent density functional theory for molecules in liquid solutions. J. Chem. Phys. 115, 4708–4717 (2001).
Google Scholar
Chemla, Y. et al. Parallel engineering of environmental bacteria and performance over years under jungle-simulated conditions. PLoS ONE 17, e0278471 (2022).
Google Scholar
Johnson, S. C. Hierarchical clustering schemes. Psychometrika 32, 241–254 (1967).
Google Scholar
Jiang, J., Liu, D., Gu, J. & Süsstrunk, S. What is the space of spectral sensitivity functions for digital color cameras? In Proc. 2013 IEEE Workshop on Applications of Computer Vision (WACV) 168–179 (IEEE, 2013).
Chemla, Y. Hyperspectral reporters for long-distance and wide-area detection of gene expression in living bacteria. Zenodo https://doi.org/10.5281/zenodo.14756888 (2025).
Levin, I. et al. VoigtLab/bioHSI: v.1.0.0. Zenodo https://doi.org/10.5281/zenodo.14827800 (2025).
Levin, I. et al. VoigtLab/npspec-webapp: v1.0.0. Zenodo https://zenodo.org/records/14827805 (2025).